Processing math: 18%

পৈসুঁবিন্যাস (চতুর্থ অধ্যায়)

- পরিসংখ্যান পরিসংখ্যান ২য় পত্র | - | NCTB BOOK
449
449

পৈসুঁবিন্যাস (Poisson Distribution)

পৈসুঁবিন্যাস হলো বিরল ঘটনা মডেলিংয়ের একটি গুরুত্বপূর্ণ পদ্ধতি, যেখানে নির্দিষ্ট সময় বা স্থানে ঘটনার সংখ্যা বিশ্লেষণ করা হয়।


মূল বৈশিষ্ট্য

  1. গড় ঘটনা সংঘটিত হওয়ার হার ধ্রুবক (λ)।
  2. প্রতিটি ঘটনা স্বাধীন।
  3. বিরল এবং বিচ্ছিন্ন ঘটনা বিশ্লেষণে ব্যবহৃত হয়।

সূত্র

P(X=k)=eλλkk!
যেখানে:

  • λ: গড় ঘটনা সংঘটিত হওয়ার হার।
  • k: সংঘটিত ঘটনার সংখ্যা।

উদাহরণ

একটি কফি শপে প্রতি ঘন্টায় গড়ে ৫ জন গ্রাহক আসে (λ=5)। ৩ জন গ্রাহক আসার সম্ভাবনা:
P(X=3)=e5533!=0.139 বা .


গড় ও ভেদাঙ্ক

  • গড় (Mean): λ
  • ভেদাঙ্ক (Variance): λ

ব্যবহার

  1. কল সেন্টারে কল আসার হার।
  2. হাসপাতালের জরুরি বিভাগে রোগীর আগমন।
  3. যানজট বিশ্লেষণ।
  4. উৎপাদন লাইনে ত্রুটি বিশ্লেষণ।

সারসংক্ষেপ

পৈসুঁবিন্যাস বিরল ঘটনা বিশ্লেষণের একটি সহজ এবং কার্যকর মডেল, যা বাস্তব জীবনের বিভিন্ন ক্ষেত্রে প্রয়োগযোগ্য।

# বহুনির্বাচনী প্রশ্ন

তথ্যের আলোকে প্রশ্নের উত্তর দাও

একটি ঝুড়িতে যতগুলো সাদা বল আছে তার দ্বিগুণ লাল বল আছে। ঝুড়ি হতে দৈবায়িতভাবে 6টি বল নির্বাচন করা হলো।

তথ্যের আলোকে প্রশ্নের উত্তর দাও

কোনো একটি দ্বিপদী বিন্যাসের গড় ৪ এবং ভেদাঙ্ক 41

পৈসুঁবিন্যাস (৪.১)

271
271

পৈসুঁবিন্যাস (Poisson Distribution)

পৈসুঁবিন্যাস হলো পরিসংখ্যানের একটি বিশেষ সম্ভাব্যতা বিন্যাস, যা নির্দিষ্ট সময় বা স্থানের মধ্যে বিরল ঘটনাগুলির সংখ্যা মডেল করতে ব্যবহৃত হয়। এটি সাধারণত সেই ঘটনাগুলির জন্য প্রযোজ্য, যেখানে ঘটনার মধ্যবর্তী সময় বা দূরত্ব প্রায় নির্দিষ্ট থাকে।


পৈসুঁবিন্যাসের বৈশিষ্ট্য

১. ঘটনার নির্দিষ্ট হার: একক সময় বা স্থানে একটি ঘটনা সংঘটিত হওয়ার গড় হার (λ) ধ্রুবক থাকে।
২. স্বাধীনতা: এক ঘটনার সাথে অন্য ঘটনার কোনো সম্পর্ক নেই।
৩. বিরল ঘটনা: ঘটনাগুলি বিরল এবং খুব ঘন ঘন ঘটে না।
৪. সময় বা স্থান নির্ভরতা: নির্দিষ্ট সময় বা স্থানের উপর ভিত্তি করে ঘটনার সংখ্যা গণনা করা হয়।


পৈসুঁবিন্যাসের সূত্র

P(X=k)=eλλkk!

যেখানে:

  • P(X=k): k সংখ্যক ঘটনা সংঘটিত হওয়ার সম্ভাবনা।
  • λ: গড় ঘটনা সংঘটিত হওয়ার হার।
  • k: সংঘটিত ঘটনার সংখ্যা (যা একটি পূর্ণসংখ্যা)।
  • e: একটি ধ্রুবক যার মান প্রায় ২.৭১৮।

উদাহরণ

প্রেক্ষাপট

একটি কফি শপে প্রতি ঘন্টায় গড়ে ৫ জন গ্রাহক আসে (λ=5)। k=3 জন গ্রাহক আসার সম্ভাবনা কত?

সমাধান

P(X=3)=e5533!

প্রথমে e5 গণনা করি:
e50.0067

তারপর:
P(X=3)=0.006712560.139

অর্থাৎ, প্রতি ঘন্টায় ৩ জন গ্রাহক আসার সম্ভাবনা ১৩.৯%।


পৈসুঁবিন্যাসের ব্যবহার

১. টেলিফোন সেন্টার:

  • প্রতি মিনিটে গড় কল আসার সংখ্যা বিশ্লেষণ করতে।

২. হাসপাতাল:

  • প্রতি ঘন্টায় জরুরি রোগীর আগমন নির্ধারণে।

৩. মান নিয়ন্ত্রণ:

  • একটি উৎপাদন লাইনে নির্দিষ্ট সংখ্যক ত্রুটিপূর্ণ পণ্যের উপস্থিতি বিশ্লেষণ।

৪. যানজট বিশ্লেষণ:

  • একটি রাস্তায় প্রতি মিনিটে গড় যানবাহন আগমনের সংখ্যা নির্ধারণ।

৫. জ্যোতির্বিদ্যা:

  • নির্দিষ্ট সময়ে একটি টেলিস্কোপে বিরল মহাজাগতিক ঘটনা দেখার সম্ভাবনা নির্ধারণ।

পৈসুঁবিন্যাসের গড় ও ভেদাঙ্ক

গড় (Mean)

পৈসুঁবিন্যাসের গড় হলো λ, অর্থাৎ গড় ঘটনা সংঘটিত হওয়ার হার।

ভেদাঙ্ক (Variance)

পৈসুঁবিন্যাসের ভেদাঙ্কও λ, অর্থাৎ:

E(X)=Var(X)=λ


পৈসুঁবিন্যাস বনাম দ্বিপদী বিন্যাসের তুলনা

বিষয়পৈসুঁবিন্যাসদ্বিপদী বিন্যাস
সংজ্ঞানির্দিষ্ট সময় বা স্থানে বিরল ঘটনার সংখ্যা।নির্দিষ্ট সংখ্যক পরীক্ষায় সফলতার সংখ্যা।
গাণিতিক মডেলP(X=k)=eλλkk! P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}
গড় ও ভেদাঙ্ক \lambda এবং \lambda n \cdot p এবং n \cdot p \cdot (1-p)
ব্যবহারবিরল ঘটনা মডেলিং।সীমিত সংখ্যক বার্ণেৌলি প্রচেষ্টা।

সারসংক্ষেপ

পৈসুঁবিন্যাস বিরল ঘটনার সম্ভাবনা বিশ্লেষণে একটি শক্তিশালী টুল। এর গাণিতিক মডেলটি বাস্তব জীবনের বিভিন্ন ক্ষেত্রে, যেমন টেলিকমিউনিকেশন, স্বাস্থ্যসেবা, এবং যানজট বিশ্লেষণে গুরুত্বপূর্ণ ভূমিকা পালন করে। এর সরলতা এবং কার্যকারিতা এটি একটি জনপ্রিয় পরিসংখ্যানিক মডেল হিসেবে গড়ে তুলেছে।

পৈসুঁবিন্যাসের সম্ভাবনা অপেক্ষক উদ্ভাবন (৪.২)

257
257

পৈসুঁবিন্যাসের সম্ভাবনা অপেক্ষক উদ্ভাবন

পৈসুঁবিন্যাসের সম্ভাবনা অপেক্ষক P(X = k) = \frac{e^{-\lambda} \lambda^k}{k!} উদ্ভাবন করতে বার্ণেৌলি বিন্যাস এবং সীমার ধারণা ব্যবহার করা হয়। পৈসুঁবিন্যাসের মূল ধারণা হলো, বিরল ঘটনাগুলির জন্য দ্বিপদী বিন্যাস থেকে এটি একটি বিশেষ ক্ষেত্রে রূপান্তরিত হয়।


ধাপ ১: দ্বিপদী বিন্যাসের সূত্র

দ্বিপদী বিন্যাসের সম্ভাবনা সূত্র:
P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}

যেখানে:

  • n : মোট পরীক্ষা সংখ্যা।
  • k : সফলতার সংখ্যা।
  • p : সফলতার সম্ভাবনা।
  • \binom{n}{k} = \frac{n!}{k! (n-k)!} : কম্বিনেশন।

ধাপ ২: বিরল ঘটনা এবং পৈসুঁবিন্যাসের প্রেক্ষাপট

পৈসুঁবিন্যাসের জন্য, নিম্নলিখিত শর্তগুলো বিবেচনা করা হয়:

  1. n বড় এবং p ছোট (যাতে n \cdot p = \lambda ধ্রুবক থাকে)।
  2. সফলতার সম্ভাবনা p = \frac{\lambda}{n}
  3. n বেড়ে গেলে দ্বিপদী বিন্যাস পৈসুঁবিন্যাসে রূপান্তরিত হয়।

ধাপ ৩: সূত্রে রূপান্তর

দ্বিপদী বিন্যাসে P(X = k) এর মান:
P(X = k) = \binom{n}{k} \left(\frac{\lambda}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^{n-k}

\binom{n}{k} এর প্রসারণ:

\binom{n}{k} = \frac{n!}{k!(n-k)!}

\left(\frac{\lambda}{n}\right)^k যোগ করা:

P(X = k) = \frac{n!}{k!(n-k)!} \cdot \left(\frac{\lambda}{n}\right)^k \cdot \left(1 - \frac{\lambda}{n}\right)^{n-k}


ধাপ ৪: সীমার ধারণা প্রয়োগ

যখন n \to \infty :

  1. \left(1 - \frac{\lambda}{n}\right)^n \to e^{-\lambda}
  2. \left(1 - \frac{\lambda}{n}\right)^{-k} \to 1 , কারণ k একটি ছোট পূর্ণসংখ্যা।
  3. \frac{n!}{(n-k)!} \to n^k , কারণ n বড়।

তাহলে, P(X = k) এর সীমা দাঁড়ায়:
P(X = k) = \frac{e^{-\lambda} \lambda^k}{k!}


ধাপ ৫: চূড়ান্ত অপেক্ষক

তাহলে, পৈসুঁবিন্যাসের সম্ভাবনা অপেক্ষক হয়:
P(X = k) = \frac{e^{-\lambda} \lambda^k}{k!}


উদাহরণ

ধরা যাক, প্রতি মিনিটে একটি ফোন সেন্টারে গড়ে ৩টি কল আসে ( \lambda = 3 )। ২টি কল আসার সম্ভাবনা গণনা করতে:

P(X = 2) = \frac{e^{-3} \cdot 3^2}{2!}

এখানে:

  • e^{-3} \approx 0.0498 ,
  • 3^2 = 9 ,
  • 2! = 2

তাহলে:
P(X = 2) = \frac{0.0498 \cdot 9}{2} = 0.224

অর্থাৎ, ২টি কল আসার সম্ভাবনা ২২.৪%।


সারসংক্ষেপ

পৈসুঁবিন্যাসের অপেক্ষক বার্ণেৌলি বিন্যাস থেকে রূপান্তরিত হয়, যেখানে n \to \infty এবং p \to 0 , কিন্তু n \cdot p = \lambda ধ্রুবক থাকে। এর মাধ্যমে বিরল ঘটনার মডেলিং সহজ হয়।

পৈসুঁবিন্যাসের গড় ও ভেদাঙ্ক নির্ণয় (৪.৩)

348
348

পৈসুঁবিন্যাসের গড় ও ভেদাঙ্ক নির্ণয়

পৈসুঁবিন্যাসের গড় (Mean) এবং ভেদাঙ্ক (Variance) নির্ধারণের জন্য এর মূল সূত্র এবং গাণিতিক প্রত্যাশা E(X) ও ভেদাঙ্ক Var(X) -এর ধারণা ব্যবহার করা হয়।


গড় নির্ণয়

পৈসুঁবিন্যাসের গড়:

গড় বা গণিতগত প্রত্যাশা E(X) হলো প্রত্যাশিত ঘটনাগুলির গড় সংখ্যা। পৈসুঁবিন্যাসে এটি \lambda -এর সমান।

E(X) = \lambda

অর্থ:

\lambda হলো গড় হার, যা নির্দিষ্ট সময় বা স্থানের মধ্যে একটি ঘটনা ঘটার গড় সংখ্যা নির্দেশ করে।


ভেদাঙ্ক নির্ণয়

পৈসুঁবিন্যাসের ভেদাঙ্ক:

ভেদাঙ্ক Var(X) হলো গড় থেকে মানগুলোর বিচ্যুতি। পৈসুঁবিন্যাসের ক্ষেত্রে ভেদাঙ্কও \lambda -এর সমান।

Var(X) = \lambda

অর্থ:

গড় হার \lambda যেটি গড় সংখ্যার মতো একই মান নির্ধারণ করে, তা একইসাথে ভেদাঙ্ক হিসেবেও কাজ করে।


প্রমাণ

পৈসুঁবিন্যাসের জন্য সম্ভাব্যতা ফাংশন:
P(X = k) = \frac{e^{-\lambda} \lambda^k}{k!}

গড় নির্ণয়ের ধাপ:

E(X) = \sum_{k=0}^{\infty} k \cdot P(X = k)

E(X) = \sum_{k=1}^{\infty} k \cdot \frac{e^{-\lambda} \lambda^k}{k!}

k! -এর পরিবর্তে (k-1)! দিয়ে সরলীকরণ করলে:
E(X) = \lambda \cdot \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!}

\sum_{k=1}^{\infty} কে e^{\lambda} -এর প্রসারণে পরিবর্তিত করলে:
E(X) = \lambda


ভেদাঙ্ক নির্ণয়ের ধাপ:

ভেদাঙ্কের সূত্র:
Var(X) = E(X^2) - [E(X)]^2

E(X^2) বের করতে k^2 -এর উপর ভিত্তি করে P(X = k) -এর গাণিতিক গুণফল ব্যবহার করা হয়। নির্ধারণ শেষে প্রমাণিত হয় যে:
E(X^2) = \lambda + \lambda^2

তাহলে:
Var(X) = (\lambda + \lambda^2) - \lambda^2 = \lambda


উদাহরণ

প্রেক্ষাপট

ধরা যাক, একটি কফি শপে প্রতি ঘণ্টায় গড়ে \lambda = 4 জন গ্রাহক আসে।

গড়:

E(X) = \lambda = 4

ভেদাঙ্ক:

Var(X) = \lambda = 4

অর্থাৎ, প্রতি ঘণ্টায় গড় গ্রাহক সংখ্যা ৪, এবং এই গড় থেকে বিচ্যুতির মানও ৪।


গড় ও ভেদাঙ্কের সম্পর্ক

পৈসুঁবিন্যাসের ক্ষেত্রে:
E(X) = Var(X) = \lambda

এটি বিশেষ বৈশিষ্ট্য যা পৈসুঁবিন্যাসকে অন্য অনেক বিন্যাস থেকে আলাদা করে।


সারসংক্ষেপ

  • গড় (Mean): E(X) = \lambda
  • ভেদাঙ্ক (Variance): Var(X) = \lambda
  • পৈসুঁবিন্যাসে গড় ও ভেদাঙ্ক সমান এবং এটি গড় ঘটনার হার \lambda -এর উপর নির্ভরশীল।

পৈসুঁবিন্যাসের ধর্মাবলী ও ব্যবহার (৪.৪)

253
253

পৈসুঁবিন্যাসের ধর্মাবলী (Properties of Poisson Distribution)

পৈসুঁবিন্যাসের ক্ষেত্রে কয়েকটি গুরুত্বপূর্ণ ধর্মাবলী রয়েছে, যা এটি অন্য বিন্যাস থেকে আলাদা করে।


১. একক সময় বা স্থানের জন্য নির্দিষ্ট হার ( \lambda )

  • একটি নির্দিষ্ট সময় বা স্থানের মধ্যে একটি ঘটনা সংঘটিত হওয়ার গড় হার \lambda ধ্রুবক থাকে।
  • \lambda একটি ধনাত্মক সংখ্যা যা গড় এবং ভেদাঙ্ক উভয়ের জন্য প্রযোজ্য।

২. স্বাধীন ঘটনা

  • প্রতিটি ঘটনা একে অপরের থেকে স্বাধীন।
  • একটি ঘটনার সংঘটন পরবর্তী ঘটনার উপর কোনো প্রভাব ফেলে না।

৩. বিরল ঘটনা

  • ঘটনাগুলি বিরল এবং নির্দিষ্ট সময় বা স্থানে একটি ছোট অংশে সংঘটিত হয়।
  • n \to \infty , p \to 0 এবং n \cdot p = \lambda শর্ত পূরণ করতে হবে।

৪. গড় ও ভেদাঙ্ক সমান

  • পৈসুঁবিন্যাসে গড় এবং ভেদাঙ্ক সমান এবং উভয়ই \lambda এর সমান:
    E(X) = Var(X) = \lambda

৫. শুধুমাত্র প্রাকৃতিক সংখ্যা k

  • পৈসুঁবিন্যাসে X র্যান্ডম ভেরিয়েবল শুধুমাত্র 0, 1, 2, \dots প্রাকৃতিক সংখ্যা গ্রহণ করতে পারে।

৬. যুক্ত পৈসুঁবিন্যাস

  • যদি দুটি স্বাধীন পৈসুঁবিন্যাসের র্যান্ডম ভেরিয়েবল X_1 এবং X_2 -এর গড় \lambda_1 এবং \lambda_2 হয়, তবে তাদের যোগফলও একটি পৈসুঁবিন্যাস যার গড়:
    \lambda = \lambda_1 + \lambda_2

৭. সময় বা স্থান অনুযায়ী পরিবর্তন

  • যদি ঘটনাগুলি সময় বা স্থানের উপর নির্ভরশীল হয়, তবে পৈসুঁবিন্যাসের জন্য \lambda সময় বা স্থানের সাথে পরিবর্তিত হতে পারে।

পৈসুঁবিন্যাসের ব্যবহার

পৈসুঁবিন্যাস বাস্তব জীবনের অনেক ক্ষেত্রে ব্যবহার হয়, বিশেষত যেখানে বিরল ঘটনা বিশ্লেষণ করা হয়। এর কয়েকটি গুরুত্বপূর্ণ ব্যবহার নিচে দেওয়া হলো:


১. টেলিকমিউনিকেশন

  • প্রতি মিনিটে একটি কল সেন্টারে আসা কলের সংখ্যা নির্ধারণে।
  • উদাহরণ: একটি ফোন সেন্টারে প্রতি ঘন্টায় গড়ে 10 টি কল আসে। পৈসুঁবিন্যাস ব্যবহার করে একটি নির্দিষ্ট সময়ে নির্দিষ্ট সংখ্যক কল আসার সম্ভাবনা বিশ্লেষণ করা যায়।

২. যানজট বিশ্লেষণ

  • নির্দিষ্ট সময়ে একটি রাস্তায় যানবাহন আসার সংখ্যা বিশ্লেষণে।
  • উদাহরণ: প্রতি মিনিটে একটি নির্দিষ্ট চেকপয়েন্ট দিয়ে গড়ে ৫টি যানবাহন চলাচল করে।

৩. উৎপাদন ও মান নিয়ন্ত্রণ

  • একটি নির্দিষ্ট সময়ে উৎপাদিত পণ্যে ত্রুটি পাওয়ার সম্ভাবনা বিশ্লেষণে।
  • উদাহরণ: একটি কারখানায় প্রতি ১০০টি পণ্যের মধ্যে গড়ে ২টি ত্রুটিপূর্ণ পণ্য পাওয়া যায়।

৪. স্বাস্থ্যসেবা

  • হাসপাতালে জরুরি রোগীর আগমনের সংখ্যা বিশ্লেষণে।
  • উদাহরণ: একটি হাসপাতালে প্রতি ঘণ্টায় গড়ে ৪ জন জরুরি রোগী আসে।

৫. জ্যোতির্বিদ্যা

  • নির্দিষ্ট সময়ে বিরল মহাজাগতিক ঘটনা, যেমন নক্ষত্র বিস্ফোরণের সংখ্যা বিশ্লেষণে।

৬. অপরাধ বিশ্লেষণ

  • একটি শহরের একটি এলাকায় নির্দিষ্ট সময়ে একটি অপরাধ সংঘটিত হওয়ার সম্ভাবনা নির্ধারণে।
  • উদাহরণ: প্রতি সপ্তাহে একটি নির্দিষ্ট এলাকায় গড়ে ২টি অপরাধ ঘটে।

৭. বীমা

  • নির্দিষ্ট সময়ে বীমার দাবি দাখিলের সংখ্যা বিশ্লেষণে।
  • উদাহরণ: একটি কোম্পানিতে প্রতি মাসে গড়ে ৫টি দাবি দাখিল হয়।

সারসংক্ষেপ

পৈসুঁবিন্যাস বিরল এবং নির্দিষ্ট সময় বা স্থানের মধ্যে সংঘটিত ঘটনাগুলি বিশ্লেষণে ব্যবহৃত হয়। এর গড় ও ভেদাঙ্ক সমান ( \lambda ) এবং এটি বাস্তব জীবনের সমস্যাগুলিতে, যেমন টেলিকমিউনিকেশন, যানজট, মান নিয়ন্ত্রণ, স্বাস্থ্যসেবা ইত্যাদিতে গুরুত্বপূর্ণ ভূমিকা পালন করে।

পরিমিত বিন্যাস ও পরিমিত রেখা (৫.১)

450
450

পরিমিত বিন্যাস এবং পরিমিত রেখা দুটি ভিন্ন ধারণা যা বিভিন্ন প্রেক্ষিতে ব্যবহৃত হয়।


পরিমিত বিন্যাস

পরিমিত বিন্যাস হলো তথ্যের এমন কাঠামোবদ্ধ উপস্থাপন পদ্ধতি যা স্পষ্ট, সংক্ষিপ্ত, এবং কার্যকরী। এটি মূলত ডেটার বিন্যাস বা ফরম্যাটকে বোঝায়।

বৈশিষ্ট্য:

  • তথ্য বা ডেটা গুছিয়ে উপস্থাপন করা।
  • সহজবোধ্য এবং কার্যকরী।
  • প্রোগ্রামিং ভাষা ও ডেটা এক্সচেঞ্জ ফরম্যাটে ব্যবহৃত হয়, যেমন:
    • HTML, JSON, XML ইত্যাদি।

উদাহরণ:

{
  "name": "পরিমিত বিন্যাস",
  "type": "ডেটা ফরম্যাট",
  "usage": "তথ্যের বিনিময়ে"
}

পরিমিত রেখা

পরিমিত রেখা হলো জ্যামিতিক ধারণা যা সরল রেখার দৈর্ঘ্য বা আকার নির্ধারণে ব্যবহৃত হয়। এটি সাধারণত একক পরিমাপের মাধ্যমে সরল রেখার গঠন, দৈর্ঘ্য, অথবা দিকনির্দেশ প্রকাশ করে।

বৈশিষ্ট্য:

  • জ্যামিতিক বা ভৌত পরিমাপ।
  • নির্দিষ্ট দৈর্ঘ্য এবং প্রস্থ সহ রেখা।
  • বিভিন্ন জ্যামিতিক সমস্যার সমাধানে ব্যবহৃত হয়।

উদাহরণ:

  • একটি ৫ সেন্টিমিটার লম্বা রেখা।
  • ত্রিভুজের একটি বাহুর পরিমিত রেখা।

তুলনামূলক পার্থক্য

বৈশিষ্ট্যপরিমিত বিন্যাসপরিমিত রেখা
প্রকৃতিডেটার গঠন বা বিন্যাস পদ্ধতি।জ্যামিতিক রেখা বা এর পরিমাপ।
ব্যবহারক্ষেত্রসফটওয়্যার, ডেটাবেস, এবং ডেটা এক্সচেঞ্জ।জ্যামিতি, গ্রাফিক্স, এবং ডিজাইন।
উদাহরণJSON, XML ফরম্যাট।ত্রিভুজের একটি বাহু।

এগুলো আলাদা প্রেক্ষিতে ব্যবহৃত হলেও উভয়ের গুরুত্বই সমানভাবে প্রাসঙ্গিক।

পরিমিত বিন্যাসের গড় ও ভেদাঙ্ক (৫.২)

400
400

পরিমিত বিন্যাসে গড় (Mean) এবং ভেদাঙ্ক (Variance) ডেটা বিশ্লেষণের গুরুত্বপূর্ণ পরিমাপ। এগুলো সাধারণত তথ্যের উপাত্ত বিশ্লেষণে ব্যবহৃত হয়, যা ডেটার কেন্দ্রীক প্রবণতা ও বিচিত্রতা বুঝতে সাহায্য করে।


গড় (Mean):

পরিমিত বিন্যাসে গড় হলো সমস্ত উপাত্তের যোগফলকে উপাত্তের সংখ্যার দ্বারা ভাগ করলে যে মান পাওয়া যায়।

সূত্র:
গড় (Mean) = \frac{\sum X}{N}

  • X : উপাত্ত বা মানগুলোর যোগফল।
  • N : উপাত্তের সংখ্যা।

উদাহরণ:
ধরা যাক, একটি পরিমিত বিন্যাসে উপাত্ত: 10, 20, 30, 40, 50

গড় = \frac{10 + 20 + 30 + 40 + 50}{5} = \frac{150}{5} = 30


ভেদাঙ্ক (Variance):

ভেদাঙ্ক হলো গড় থেকে উপাত্তগুলোর বিচ্যুতি বা পরিবর্তনের পরিমাণ। এটি ডেটার বিভিন্নতা বা ছড়ানোর মাত্রা বোঝায়।

সূত্র:
ভেদাঙ্ক (Variance) = \frac{\sum (X_i - \mu)^2}{N}

  • X_i : প্রতিটি উপাত্ত।
  • \mu : গড়।
  • N : উপাত্তের সংখ্যা।

উদাহরণ:
উপাত্ত: 10, 20, 30, 40, 50 এবং \mu = 30

প্রথমে গড় থেকে প্রতিটি উপাত্তের বিচ্যুতি বের করি:

  • (10 - 30)^2 = 400
  • (20 - 30)^2 = 100
  • (30 - 30)^2 = 0
  • (40 - 30)^2 = 100
  • (50 - 30)^2 = 400

এবার ভেদাঙ্ক বের করি:
ভেদাঙ্ক = \frac{400 + 100 + 0 + 100 + 400}{5} = \frac{1000}{5} = 200


গড় ও ভেদাঙ্কের প্রাসঙ্গিকতা:

  1. গড় (Mean): এটি ডেটার কেন্দ্রীক প্রবণতা বা মূল প্রবণতা নির্ধারণে সাহায্য করে।
  2. ভেদাঙ্ক (Variance): এটি ডেটার বিচ্যুতি বা ছড়ানোর মাত্রা বোঝায়। ভেদাঙ্ক যত বেশি, ডেটার বৈচিত্র্য তত বেশি।

উপসংহার:
গড় এবং ভেদাঙ্ক ডেটা বিশ্লেষণের মূল উপাদান। গড় দিয়ে কেন্দ্রীয় মান নির্ধারণ করা হয় এবং ভেদাঙ্ক দিয়ে ডেটার পরিবর্তনশীলতা বা বৈচিত্র্য বোঝা যায়।

টপ রেটেড অ্যাপ

স্যাট অ্যাকাডেমী অ্যাপ

আমাদের অল-ইন-ওয়ান মোবাইল অ্যাপের মাধ্যমে সীমাহীন শেখার সুযোগ উপভোগ করুন।

ভিডিও
লাইভ ক্লাস
এক্সাম
ডাউনলোড করুন
Promotion